大语言模型在武器装备中的应用前景分析
DOI:
CSTR:
作者:
作者单位:

西北机电工程研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Prospective Analysis of the Application of Big Language Modeling in Weaponry
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着现代战争向智能化方向演进,武器装备的智能化需求也越来越高。在军事领域,装备智能化涉及对装备的智能控制、战场态势的智能感知和指挥命令的处理分析等方面,强化学习、深度学习等技术在其中发挥了重要作用。大语言模型(Large Language Model, LLM)作为一种深度学习模型,有强大的自然语言处理能力。将LLM应用于装备的控制,提高武器系统的自主性;将LLM应用在态势感知中,可以提高对态势处理的灵活性和准确性;将LLM应用于指令分析,可以提升处理指令的效率。本文在介绍当前LLM在武器装备研究中的应用现状后,分析了可能会遇到的问题。随后通过尝试构建用于指令分析的大模型,验证了应用LLM的巨大潜力。最后对在武器装备上应用LLM的未来趋势进行展望。

    Abstract:

    As modern warfare evolves towards intelligence, the demand for intelligence in weapons and equipment is also increasing. In the military field, equipment intelligence includes intelligent control of equipment, intelligent perception of the battlefield situation, and processing and analysis of command orders, etc., in which technologies such as reinforcement learning and deep learning play an important role. Large Language Model (LLM), as a deep learning model, has a powerful natural language processing capability. Applying LLM to equipment control can improve the autonomy of the weapon system; applying LLM to situation awareness can improve the flexibility and accuracy of situation processing; applying LLM to command analysis can improve the efficiency of command processing. In this paper, after presenting the current status of the application of LLM in weapons research, we analyse the problems that may be encountered. Then, the great potential of the application of LLM is verified by attempting to construct a large-scale command analysis model. Finally, the future trend of the application of LLM in weapons research is predicted.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-26
  • 最后修改日期:2025-01-02
  • 录用日期:2025-01-08
  • 在线发布日期:
  • 出版日期:
文章二维码