基于BP 神经网络的转筒式称量系统的称量效率预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Weighing Efficiency Prediction in Rotor Weighing System Based onBP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决普通数理方法难以进行转筒式称量效率预测的问题,基于BP 神经网络,建立人工神经网络算法 模型。对模型输入项进行分析,找出影响称重效率的重点关联因素,研究在5 种输入层因素下,模型称量效率的预 测精度,并进行仿真分析。结果表明:该模型能有效预测转筒式称量方式的称量效率,且预测精度较高。

    Abstract:

    The artificial neural network (ANN) prediction model based on BP neural network is built to predict the weighing efficiency of rotor weighing machine which is difficult to carry out by ordinary mathematical methods. The key factors of the weighing efficiency are found by analysis of the input layers. The prediction accuracy of the weighing efficiency of the model is studied under 5 kinds of input layer factors, and the simulation analysis is carried out. The results show that the model can effectively predict the weighing efficiency of the rotary weighing method, and the prediction accuracy is high.

    参考文献
    相似文献
    引证文献
引用本文

许杰淋.基于BP 神经网络的转筒式称量系统的称量效率预测[J].,2020,39(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-26
  • 最后修改日期:2019-12-03
  • 录用日期:
  • 在线发布日期: 2020-04-24
  • 出版日期:
文章二维码