基于1D-CNN 的卫星姿态控制系统故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fault Diagnosis Method of Satellite Attitude Control System Based on 1D-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决卫星姿态控制系统中自主故障检测和诊断的问题,提出一种改进的1D-CNN 卫星姿态控制系统故 障诊断方法。以卫星姿态控制系统的故障诊断为背景,构建航天器姿态动力学模型,将卷积神经网络(convolutional neural network,CNN)与快速卷积算法相结合,对卷积神经网络的拓扑结构进行改进,根据BP 算法,将1 维原始数 据作为输入,结合反作用飞轮作为执行机构的技术特征,给出一种基于卷积神经网络的故障检测和隔离方法。仿真 结果验证了该方法对卫星姿态控制系统实时故障检测和分类的有效性。

    Abstract:

    To solve the problem of autonomous fault detection and diagnosis in satellite attitude control system, an improved one-dimensional convolution neural network fault diagnosis method is proposed. Based on the fault diagnosis of satellite attitude control system, the attitude dynamics model of spacecraft is constructed. The convolutional neural network (CNN) is integrated with fast convolution algorithm, and the topology of convolutional neural network is improved. According to BP algorithm, a fault detection and isolation method based on convolution neural network is proposed, which takes one-dimensional raw data as input and combines the technical characteristics of reaction flywheel as actuator. The simulation results verify the validity of this method for real-time fault detection and classification of satellite attitude control system.

    参考文献
    相似文献
    引证文献
引用本文

闻 新.基于1D-CNN 的卫星姿态控制系统故障诊断方法[J].,2020,39(07).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-02-19
  • 最后修改日期:2020-03-27
  • 录用日期:
  • 在线发布日期: 2020-07-21
  • 出版日期:
文章二维码