基于改进YOLOv4-tiny 的舰面多目标检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

军内科研基金


Shipboard Multi-target Detection Algorithm Based on Improved YOLOv4-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对舰面多目标的检测问题,提出一种改进YOLOv4-tiny 的舰面多目标检测算法。在卷积神经网络中引 入卷积注意力模块(convolutional block attention module,CBAM),通过混合通道特征和空间特征来关注舰面目标和 抑制背景特征,提高网络的抗背景干扰能力;针对目标尺度变化加入空间金字塔池化结构(spatial pyramid pooling, SPP)以融合不同尺度的特征,提高对不同大小目标的检测能力;使用Mish 激活函数替代Leaky ReLU 激活函数以获 得更好的泛化能力。实验结果表明:5 类舰面目标的平均检测精度为92.22%,接近YOLOv4 算法的96.48%,而检测 速度(frames per second,FPS)达到了42.5 帧/s,远高于YOLOv4 的18 帧/s;该算法能较好地平衡准确率和速度的关 系,可以对舰面目标进行实时检测。

    Abstract:

    An improved YOLOv4-tiny multi-target detection algorithm is proposed to solve the problem of multi-target detection on shipboard. A convolutional block attention module (CBAM) is introduced into the convolutional neural network to focus on shipboard targets and suppress background features by mixing channel features and spatial features, so as to improve the anti-background interference ability of the network; an spatial pyramid pooling (SPP) structure is added according to the change of target scale to fuse features of different scales, so as to improve the detection ability of targets of different sizes; Mish activation function is used instead of Leaky ReLU activation function for better generalization ability. The experimental results show that the average detection accuracy of five kinds of shipboard targets is 92.22%, which is close to the 96.48% of YOLOv4 algorithm, and the detection speed frames per second (FPS) reaches 42.5 frame/s, which is much higher than the 18 frame/s of YOLOv4 algorithm. The algorithm balances the relationship between accuracy and speed, and can detect the target on the warship in real time.

    参考文献
    相似文献
    引证文献
引用本文

汪 丁.基于改进YOLOv4-tiny 的舰面多目标检测算法[J].,2022,41(10).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-01
  • 最后修改日期:2022-07-28
  • 录用日期:
  • 在线发布日期: 2022-10-18
  • 出版日期:
文章二维码