基于级联式Snappy-CenterNet 的锥套目标检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Drogue Target Detection Algorithm Based on Cascaded Snappy-CenterNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对空中加油因场景光照变化、环境遮挡等情况造成的锥套目标识别精度低、实时性差的问题,提出一 种基于级联式Snappy-CenterNet 深度网络的锥套目标检测算法。在CenterNet 网络的基础上,以HourglassNet 为主 干网络,改进其bottleneck 结构并引入中心池化的方法,对整体的网络结构进行优化,通过级联式的网络提升整体 检测精度。实验结果表明:该算法可实现在多种复杂场景下对锥套目标的可靠检测,检测结果的精确率与召回率均 可达99%,位置精度与区域精度分别可达99%与96%,更新率可达33.68 Hz,满足空中加油近距视觉导航阶段对于 锥套识别的指标要求。

    Abstract:

    Aiming at the problems of low accuracy and poor real-time performance of drogue target recognition in aerial refueling caused by scene illumination changes and environmental occlusion, a drogue target detection algorithm based on cascaded Snappy-CenterNet deep network is proposed. On the basis of CenterNet network, HourglassNet is used as the backbone network, the bottleneck structure is improved and the central pooling method is introduced to optimize the overall network structure, and the overall detection accuracy is improved through the cascaded network. The experimental results show that the proposed algorithm can reliably detect drogue targets in a variety of complex scenes, and the precision and recall of the detection results can reach 99%, the position accuracy and region accuracy can reach 99% and 96%, respectively, and the update rate can reach 33.68 Hz, which meets the requirements of aerial refueling near vision navigation for drogue recognition.

    参考文献
    相似文献
    引证文献
引用本文

杨 乐.基于级联式Snappy-CenterNet 的锥套目标检测算法[J].,2023,42(01).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-01
  • 最后修改日期:2022-10-12
  • 录用日期:
  • 在线发布日期: 2023-02-24
  • 出版日期:
文章二维码