基于BP神经网络的野外驻训备件需求预测研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Spare Part Requirement Prediction of Field Drill Based on BP NN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的备件需求预测方法主观性强,缺乏科学性等问题,以通信部队野外驻训为背景,从备件需求影响因素出发,提出一种基于BP神经网络的预测算法。对备件精确保障及需求预测和BP神经网络及其适用范围进行简要介绍,分析了备件需求影响因素,以某型电台的功放模型为样板,对BP神经网络预测算法的适用性进行了检测。结果表明,该方法能很好地提高备件需求预测精度,满足装备保障精确化的要求。

    Abstract:

    Solving the traditional estimation of spare part requirement is very subjectivity and is not scientifically, put forward an estimation method based on BP neural network (NN) on the background of field drill of communication army by analyzing the influence factors of field drill. It also introduces spare part precise supporting and requirement estimation and BP NN and their acclimatization, analyses the influence factors of field drill, tests the applicability of the BP algorithm on the former of one transmitter-receiver’s power amplifier. The result shows that the algorithm can greatly improve precision of spare part estimation, also it can meet the need of accurate maintenance support in future warfare.

    参考文献
    相似文献
    引证文献
引用本文

窦云杰,王上军.基于BP神经网络的野外驻训备件需求预测研究[J].,2010,29(03):33-34.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-05-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码