基于模糊神经网络PID的机床直流调速系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


DC Adjustment Speed System of Machine Tool Based on Fuzzy Neural Network PID
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决PID参数的在线调整问题,针对龙门刨床的主拖动系统,提出将神经网络的模糊PID自适应控制器用于直流调速系统的方法。分析龙门刨床电气设备的组成,综合模糊控制和神经网络的长处,将神经网络、模糊逻辑和PID控制相融合,构成模糊神经网络控制器,并通过MATALAB对系统进行仿真。设计时,将模糊规则融于神经网络中,通过对神经网络的自学习、自适应能力在线调整模糊规则和隶属函数参数,对PID控制器实现在线实时调整。仿真结果表明,该系统比普通控制器具有更好的动、静态特性。

    Abstract:

    In order to solve the problem of on-line adjustments of PID parameter, proposes a new method of fuzzy neural network adaptive PID control in direct current (DC) speed regulating system aiming at advocate-drag system of Dragon-planer. Analyze constitution of electric device at planer, integrate advantages of neural network and fuzzy control, That is a fuzzy neural network control be composed by combination of neural network with fuzzy logic system and PID controller, and then composing fuzzy neural network controller, process system simulation through MATALAB. In design, fuzzy rule is integrated into neural network. The control principles of fuzzy neural network controller are taken to realize adjustment of fuzzy rule and membership function parameter by self-learning adaptive ability. The simulation result shows that the system has good dynamic and static characteristic than general controller.

    参考文献
    相似文献
    引证文献
引用本文

高玉萍.基于模糊神经网络PID的机床直流调速系统[J].,2010,29(05):67-70.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-06-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码