基于蚁群算法的空间目标地基监视重调度
CSTR:
作者:
作者单位:

(1.装备学院研究生管理大队,北京 101416;2.装备学院航天装备系,北京 101416)

作者简介:

鄢青青(1986—),男,重庆人,在读博士,从事空间目标监视网调度研究。

通讯作者:

中图分类号:

TJ03

基金项目:


Ground-based Space Surveillance Rescheduling Based on Ant Colony Optimization
Author:
Affiliation:

(1. Administrant Brigade of Postgraduate, Equipment Academy, Beijing 101416, China; 2. Department of Spaceflight Equipment, Equipment Academy, Beijing 101416, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决空间目标地基监视中的资源故障或因天气、供电导致的资源失效等对调度的干扰问题,在扰动度 量的基础上提出一种基于扰动邻域搜索的蚁群算法。建立以失败需求综合优先级最小和扰动最小为目标的重调度模 型,算法中采用 2 个信息素矩阵来产生一个可行解,通过邻域搜索在可行解的扰动邻域内对其进行局部优化,再用 蚁群算法进行全局寻优。仿真实验结果表明:该算法是有效、可行的,能在可接受时间内收敛,且其解的质量相对 启发式方法有明显提升。

    Abstract:

    In order to solve the disruption problem caused by resource fault or resource failure due to weather or power supply in scheduling for ground-based space surveillance, a rescheduling model was constructed with the optimal objective which was a weighted sum of disturbances as well as integrated priority of failed demands. Through the disturbances metric in the rescheduling process, a rescheduling algorithm based on disturbance neighborhood searching and ant colony algorithm was proposed. Through the algorithm, two pheromone matrices were used to generate a feasible solution; local optimization was adopted to improve the feasible solution in its neighborhood; then ant colony algorithm was adopted for global optimization. Experimental results from simulation of resource failure showed that the proposed algorithm was useful and feasible.

    参考文献
    相似文献
    引证文献
引用本文

鄢青青.基于蚁群算法的空间目标地基监视重调度[J].,2016,35(03):1-5.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-12-05
  • 出版日期:
文章二维码