卷积神经网络在飞机类型识别中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金“十三五”项目(6141B010216)


Application of Convolution Neural Network in Aircraft Type Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高现代战争过程中对敌军飞机的识别能力,针对军用飞机样本量少、不同视角条件下形变明显的特 点,提出一种融入center loss 的卷积神经网络与ANN 分类器结合的飞机类型识别方法。首先利用3Dmax 软件制作 的6 000 张5 类飞机图片对构建的多层CNN 模型进行训练,并利用这些图片的CNN 特征训练ANN 分类器,然后用 训练好的网络模型和分类器对真实飞机样本进行预测分类。实验结果表明:在样本量少且目标形状复杂的情况下, 该方法对5 类军事飞机的识别精度可达到97.17%,是一种切实可行的飞机类型识别算法。

    Abstract:

    In order to enhance recognition ability of enemy aircrafts in modern warfare process, with the characteristics of small amount of military aircraft samples and variety of shapes under different viewing conditions, the aircraft recognition algorithm combining center loss convolution neural network and ANN classifier is proposed. Firstly, five kinds of 6 000 aircraft images, which are produced by using 3Dmax software, is used to train the designed multi-layer CNN network model and the CNN features of these images are used to train ANN classifier. Next, the trained network model and classifier are used to forecast and classify the real aircraft samples, respectively. Finally, experimental results show that the recognition accuracy of the proposed algorithm to the five kinds of military aircraft can reach 97.17% in the case of small amount of aircraft samples and complex target shapes, which can prove that the algorithm is feasible to recognition of aircrafts type.

    参考文献
    相似文献
    引证文献
引用本文

欧阳瑞麒.卷积神经网络在飞机类型识别中的应用[J].,2017,36(12).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-16
  • 最后修改日期:2017-09-07
  • 录用日期:
  • 在线发布日期: 2019-03-20
  • 出版日期:
文章二维码