集成学习中预测精度的影响因素分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Analysis of Influencing Factors of Prediction Accuracy in Integrated Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    集成学习被认为是当前数据挖掘、机器学习中提升预测精度的重要方法。在分析集成学习基本概念的基 础上,将集成学习模型设计划分为分类器构建、分类器集成和分类结果整合3 个阶段,并从分类器误差控制、集成 泛化能力提升和应用误差容忍具体对提升集成学习预测精度进行研究探讨,通过实例分析研究3 个阶段预测精度的 影响因素和提升方法。结果表明,该研究对控制集成学习预测误差、提升预测精度和构建合理高效集成学习模型具 有较为重要的指导意义。

    Abstract:

    Ensemble learning is considered as an important method to improve the accuracy of data mining and machine learning. On the base of the analysis of the basic concepts of ensemble learning, the design of ensemble learning model is divided into 3 stages: classifier construction, classifier integration, and classification result integration, then the method of increasing prediction accuracy were discussed from 3 aspects: controlling classifier error, enhancing generalization ability, and distinguishing acceptance-error in the application. Then, the influencing factors and the increasing methods of the 3 stages were studied through the experiments. The results show that it has great significance to reduce predication error, improving prediction accuracy, and construct a reasonable integrated learning model.

    参考文献
    相似文献
    引证文献
引用本文

郭福亮.集成学习中预测精度的影响因素分析[J].,2019,38(01).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-19
  • 最后修改日期:2018-12-26
  • 录用日期:
  • 在线发布日期: 2019-03-22
  • 出版日期:
文章二维码