基于小波神经网络的航天器故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fault Diagnosis Method of Spacecraft Based on Wavelet Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对微小航天器集群的故障诊断问题,提出一种故障诊断(fault diagnosis,FD)的新方法。依据小波神经 网络(wavelet neural network,WNN)理论,结合航天器集群的领队航天器故障检测与系统重构问题,构建一种故障 诊断框架,采用小波神经网络与神经网络相结合,得出航天器姿态故障诊断策略及卫星姿态故障重构技术,给出了 领队航天器故障重构方案,并进行了仿真实验与验证。仿真结果表明:该故障诊断方法是有效的、故障重构也是可 行的

    Abstract:

    In this paper, a new fault diagnosis method is developed for the fault diagnosis of micro-spacecraft cluster. Based on the theory of wavelet neural network, in order to deal with the problem of failure detection of the leader spacecraft and reconfiguration of spacecraft cluster, a fault diagnosis framework is constructed. Combined with wavelet neural network and neural network, it is concluded the fault diagnosis strategy of spacecraft attitude and fault reconstruction technology of satellite attitude, gives the leader of the spacecraft fault reconstruction scheme, and carries out the simulation and verification. Simulation results show that the fault diagnosis method is effective and fault reconstruction is feasible.

    参考文献
    相似文献
    引证文献
引用本文

闻 新.基于小波神经网络的航天器故障诊断方法[J].,2019,38(03).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-27
  • 最后修改日期:2018-12-19
  • 录用日期:
  • 在线发布日期: 2019-04-22
  • 出版日期:
文章二维码