融合渐消无迹粒子滤波与高斯重采样的FastSLAM 算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61105071);江苏科技大学张家港校区研究生创新工程(128180206)


FastSLAM Algorithm Based on Combining Fading Unscented Particle Filtering and Gaussian Re-sampling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决快速同步定位与地图构建算法因粒子退化导致SLAM(simultaneous location and mapping)估计精度 不佳的问题,提出一种融合渐消自适应无迹粒子滤波与高斯分布重采样的FastSLAM 算法。通过融合渐消滤波和无 迹粒子滤波,产生一种自适应提议分布,利用高斯分布对高权重粒子进行分散得到新粒子。建立机器人运动模型和 观测模型,并在仿真环境中进行性能验证。仿真结果表明:该算法能有效地缓解粒子退化,增加系统稳定性,提高 SLAM 估计精度。

    Abstract:

    To solve the low estimating accuracy of SLAM (simultaneous location and mapping) caused by particle degradation in fast simultaneous location and mapping algorithm, a FastSLAM algorithm which combine fading adaptive unscented particle filtering and Gaussian distributed re-sampling is proposed. An adaptive proposal distribution was generated by combining fading filtering and unscented particle filtering, and the high-weight particles were dispersed by Gaussian distribution to get new particles. The motion model and observation model of robot were established, and the performance was tested in simulation environment. The simulation result shows that, the algorithm can effectively alleviate particle degradation, increase system stability and improve SLAM estimation accuracy.

    参考文献
    相似文献
    引证文献
引用本文

朱友帅.融合渐消无迹粒子滤波与高斯重采样的FastSLAM 算法[J].,2020,39(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-02
  • 最后修改日期:2019-12-08
  • 录用日期:
  • 在线发布日期: 2020-04-24
  • 出版日期:
文章二维码