面向发动机故障诊断精度的深度随机森林优化研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Optimization of Deep Random Forest for Engine Fault Diagnosis Accuracy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决装备故障检测存在故障数据少,难以应用深度学习方法提高性能的问题,提出一种基于优化深度 随机森林的提高装备故障诊断精度方法。根据数据集合数据的特点,构建重采样的样本集合决策树模型,通过对故 障数据中的连续数值进行C4.5 决策树离散化处理,使用扩张卷积方法扩展滑动窗口的感测范围,对训练模型进行实 验验证。实验结果表明,运用深度随机森林的方法对提高装备故障诊断有一定借鉴作用。

    Abstract:

    In order to solve the problem of insufficient data in equipment fault detection and difficulty to apply deep learning methods for improving performance, a method for improving equipment fault diagnosis accuracy based on optimized deep random forest is proposed. According to the characteristics of the dataset acquiring data, a re-sampled sample set decision tree model was constructed. The continuous value in the fault data was discretized by the C4.5 decision tree, and the extended convolution method was used to expand the sensing range of the sliding window, and finally training the model was verified by experiments. The experimental results show that the method of using deep random forest can be used as a reference for improving equipment fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

贺鹏程.面向发动机故障诊断精度的深度随机森林优化研究[J].,2020,39(12).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-20
  • 最后修改日期:2020-08-20
  • 录用日期:
  • 在线发布日期: 2021-01-26
  • 出版日期:
文章二维码