基于XGboost 算法的面向任务携行航材品种确定方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A Method to Determine Type of Spare Parts for Mission-oriented Aircraft Based on Xgboost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统选取航材品种方法对人的经验依赖较多、准确率不高、运算效率低等问题,提出一种采用 XGboost 算法的携行航材品种选择方法。建立分类特征体系,使用XGboost 算法对特征进行重要性排序、分析和筛 选,构建精简版分类特征体系,使用K 折交叉验证法和经验调参对样本数据分组和训练,并与GBDT、RF、Adaboost 等分类算法的结果比析。结果表明:XGboost 算法可减少人为因素干预,在携行航材品种确定应用中具有高效性、 科学性和优越性。

    Abstract:

    In order to solve these problems of traditional selecting aircraft spare parts method, such as more relying on human experience, low accuracy and low operational efficiency, a new method of selecting aircraft spare parts by using XGboost algorithm was proposed. The classification feature system was established. The XGboost algorithm was used to sort, analyze and screen the features, and the simplified version of the classification feature system was constructed. The k-fold cross validation method and empirical reference were used to group and train the sample data, and the results were compared with GBDT, RF, Adaboost and other classification algorithms. The results show that the XGboost algorithm can reduce the interference of human factors, and it is efficient, scientific and optimal.

    参考文献
    相似文献
    引证文献
引用本文

宋传洲.基于XGboost 算法的面向任务携行航材品种确定方法[J].,2021,40(2).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-30
  • 最后修改日期:2020-10-16
  • 录用日期:
  • 在线发布日期: 2021-02-26
  • 出版日期:
文章二维码