一种改进粒子群优化HMM 的故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No.71801196);辽宁省兴辽英才计划(XLYC1903015)


A Fault Diagnosis Method Based on Improved Particle Swarm Optimization HMM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统故障诊断方法不能准确定位故障位置的问题,提出一种改进粒子群优化隐马尔科夫模型(hidden markov model,HMM)的故障诊断方法。应用HMM 识别综合传动装置故障模式,用模糊集定义模式研究电压信号 特征提取方法,并根据特征值的敏感程度进行优化选择;应用3 种HMM 对综合传动装置在不同运行状态下的故障 信号进行故障诊断,并且对诊断结果进行对比。结果表明:改进粒子群优化的HMM 模型能快速有效地识别综合传 动装置中磨损、损坏等故障模式,适用性良好,可应用于实际综合传动装置系统的故障诊断。

    Abstract:

    The traditional fault diagnosis methods can not locate the fault location accurately. Therefore, an improved particle swarm optimization hidden Markov mode (HMM) fault diagnosis method is proposed. The HMM l is used to identify the fault mode of the integrated transmission device, the fuzzy set is used to define the mode to study the voltage signal feature extraction method, and the optimal selection is made according to the sensitivity of the eigenvalue; 3 HMM are applied to analyze the fault signals of the integrated transmission device under different operating conditions. And the diagnosis results are compared. The results show that the improved particle swarm optimization HMM model can quickly and effectively identify the wear, damage and other fault modes in the integrated transmission, and has good applicability, which can be applied to the fault diagnosis of the actual integrated transmission system.

    参考文献
    相似文献
    引证文献
引用本文

吴琼琼.一种改进粒子群优化HMM 的故障诊断方法[J].,2021,40(10).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-08
  • 最后修改日期:2021-08-20
  • 录用日期:
  • 在线发布日期: 2021-11-22
  • 出版日期:
文章二维码