基于深度学习的空中侦察取证目标分类
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Target Classification for Aerial Reconnaissance and Forensics Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高空中侦察取证的自动化、智能化水平,提出基于深度学习与FPGA 软硬件协同设计开展空中侦察 取证自动目标分类。多渠道收集整理军机数据集,利用深层神经网络模型开展自动识别,验证自动目标分类可行性, 并部署至FPGA 开发评估板进行准确率、吞吐量等性能验证。实验结果证明:多种网络模型均可有效实现空中侦察 取证目标的自动分类,并具备较高的吞吐量与准确率,时效性可满足战场实际需要。

    Abstract:

    In order to improve the automation and intelligence level of aerial reconnaissance and forensics, this paper proposes an automatic target classification for aerial reconnaissance and forensics based on deep learning and FPGA software and hardware co-design. Multi-channel collection and collation of military aircraft data sets, using deep neural network model to carry out automatic recognition, verify the feasibility of automatic target classification, and deploy to the FPGA development evaluation board for accuracy, throughput and other performance verification. The experimental results show that various network models can effectively realize the automatic classification of aerial reconnaissance and forensics targets, and have high throughput and accuracy, and the timeliness can meet the actual needs of the battlefield.

    参考文献
    相似文献
    引证文献
引用本文

刘 克.基于深度学习的空中侦察取证目标分类[J].,2022,41(4).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-22
  • 最后修改日期:2022-01-28
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码