基于极度梯度提升模型的火炮身管寿命预测
DOI:
CSTR:
作者:
作者单位:

中国兵器工业计算机应用技术研究所 网络信息体系论证与研发部

作者简介:

通讯作者:

中图分类号:

TJ38

基金项目:


Prediction of Gun Barrel life Based on Extreme Gradient Boosting Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    火炮身管失效机理是一个相当复杂的综合过程,目前基于机理推导的理论模型预测精度较低,无法满足作战部队实际使用。为提高火炮身管寿命预测的精度,将身管内径磨损量作为寿命预测指标,提出了基于极度梯度提升(XGBoost)模型的火炮身管寿命预测算法。该算法以火炮弹射数为输入,以身管内径磨损量为输出,通过不断集成多个弱学习器,反复训练来拟合前一个弱学习器预测值与实际值之间的残差,从而生成强学习器,并通过在损失函数后加入正则化项以及采用剪枝技术降低模型过拟合的风险。基于某型火炮实测数据进行验证,结果表明,所提模型不仅有效解决了火炮弹射量与身管内径磨损量之间的映射关系,而且相比支持向量机、BP神经网络、灰色模型等现有算法显著提升了身管寿命预测精度。

    Abstract:

    The failure mechanism of gun barrel is a rather complex comprehensive process, and the current theoretical models based on mechanism derivation is less accurate and cannot meet the actual use of combat troops. In order to predict the life of gun barrel more accurately, the life prediction algorithm of gun barrel based on the extreme gradient boosting model is proposed based on the wear of the inner diameter of gun barrel as the life prediction index. The algorithm takes the amount of artillery shell shot as the input, takes the inner diameter wear of the barrel as the output, and continuously integrates multiple weak learners, repeatedly trains to fit the residual difference between the predicted value and the actual value of the previous weak learner, thereby generating a strong learner, and reduces the risk of model overfitting by adding regularization terms after the loss function and using pruning technology. Based on the measured data of a certain type of artillery, the results show that the proposed model not only effectively solves the mapping relationship between the amount of shell shot and the wear of the inner diameter of barrel, but also significantly improves the prediction accuracy of the life of barrel compared with the existing algorithms such as support vector machine, BP neural network and gray model.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-21
  • 最后修改日期:2022-07-29
  • 录用日期:2022-07-01
  • 在线发布日期:
  • 出版日期:
文章二维码