基于大数据分析技术的战场态势分析及预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

武警后勤学院基础研究项目(WHJ202101)


Battlefield Situation Analysis and Prediction Based on Big Data Analysis Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对信息化条件下联合作战产生的海量、多源、复杂的战场数据,提出一种Hadoop 分布式数据处理平台。 收集海量数据进行战场态势(battle field situation,BS)要素分析,用粒子群算法(particle swarm optimization,PSO) 优化极限学习机(extreme learning machines,ELM)的方法对战场态势历史数据进行训练,构建战场态势预测模型; 并采用Matlab2018 对战场态势进行模拟仿真。仿真结果表明:Hadoop 处理海量战场数据效率更高,可有效提高战 场态势的预测精度,为辅助指挥员快速掌握复杂战场态势提供新的方法和途径。

    Abstract:

    Aiming at the massive, multi-source and complex battlefield data produced by joint operations under the condition of informationization, a Hadoop distributed data processing platform is proposed. Massive data are collected to analyze the elements of battle field situation (BS), and the particle swarm optimization (PSO) is used to optimize the extreme learning machines (ELM). The method of ELM is used to train the historical data of battlefield situation and construct the prediction model of battlefield situation, and Matlab 2018 is used to simulate the battlefield situation. The simulation results show that Hadoop is more efficient in processing massive battlefield data, and can effectively improve the prediction accuracy of battlefield situation, which provides a new method and way for assisting commanders to quickly grasp the complex battlefield situation.

    参考文献
    相似文献
    引证文献
引用本文

王秀娟.基于大数据分析技术的战场态势分析及预测[J].,2022,41(9).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-09
  • 最后修改日期:2022-06-23
  • 录用日期:
  • 在线发布日期: 2022-09-13
  • 出版日期:
文章二维码