基于深度学习的无人机指令意图识别技术
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


UAV Command Intent Identification Technology Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现空管员直接发布指令来操控无人机,结合深度学习在自然语言处理(natural language processing, NLP)中的应用,提出一种基于深度学习的无人机指令意图识别方法。使用改进Skip-Gram 模型生成指令文本的词向 量,输入到卷积神经网络进行指令文本分类,得到空管员发布指令的意图。通过实验验证,结果表明:该方法能够 较准确地对指令意图进行识别,有助于后续指令理解技术的实现,为进一步实现空管员与无人机直接交互做准备。

    Abstract:

    In order to realize that air traffic controllers can directly issue instructions to control unmanned aerial vehicles (UAVs), combined with the application of deep learning in natural language processing (NLP), a method of unmanned aerial vehicle (UAV) command intention recognition based on deep learning is proposed. The improved Skip-Gram model is used to generate the word vector of the instruction text, which is input into the convolutional neural network to classify the instruction text, and the intention of the air traffic controller to issue the instruction is obtained. The experimental results show that the method can accurately identify the command intention, which is helpful for the realization of the subsequent command understanding technology and for the further direct interaction between air traffic controllers and UAVs.

    参考文献
    相似文献
    引证文献
引用本文

符 凯.基于深度学习的无人机指令意图识别技术[J].,2022,41(10).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-01
  • 最后修改日期:2022-07-28
  • 录用日期:
  • 在线发布日期: 2022-10-18
  • 出版日期:
文章二维码