基于改进蚁群算法的无人机2 维航路规划
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61174031)


2D Path Planning for UAV Based on Improved Ant Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统蚁群算法在无人机3 维航路规划中存在搜索时间长、容易陷入局部最优解的问题,提出一种蚁 群算法的改进策略。将固定翼无人机的性能约束条件作为待扩展节点是否可行的判断条件,减小计算量和算法搜索 时间;对航路点的高度规划采用直接设定策略,将3 维航路规划问题简化为2 维航路规划问题,减小算法的复杂性; 改进全局信息素更新规则和安全启发因子,解决了局部最优解和威胁源规避问题。仿真结果表明:改进蚁群算法与 传统蚁群算法相比,能够有效规划出一条从起点到终点的飞行航路,具有更高的有效性和实用性。

    Abstract:

    Aiming at the problem that the traditional ant colony algorithm has long search time and is easy to fall into local optimal solution in UAV 3D route planning, an improved ant colony algorithm strategy is proposed. The performance constraints of the fixed-wing UAV are used to judge whether the node to be expanded is feasible or not, which reduces the amount of calculation and the search time of the algorithm. The height planning of the waypoint is directly set, which simplifies the 3D route planning problem into a 2D route planning problem and reduces the complexity of the algorithm. The global pheromone update rule and the safety heuristic factor are improved to solve the problems of local optimal solution and threat source evasion. The simulation results show that compared with the traditional ant colony algorithm, the improved ant colony algorithm can effectively plan a flight route from the starting point to the end point, and has higher effectiveness and practicability.

    参考文献
    相似文献
    引证文献
引用本文

柳文林.基于改进蚁群算法的无人机2 维航路规划[J].,2022,41(11).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-13
  • 最后修改日期:2022-08-13
  • 录用日期:
  • 在线发布日期: 2022-11-21
  • 出版日期:
文章二维码