基于LLSO-MKELM 算法的观瞄故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省“兴辽英才计划”项目(XLYC1903015)


Fault Diagnosis of Observation-aiming Based on LLSO-MKELM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对装甲车辆的观瞄系统,提出一种基于多核极限学习机(multi kernel extreme learning machine,MKELM) 的故障诊断模型。利用分级粒子群优化算法(level-based learning swarm optimizer,LLSO)优化模型参数,利用采集 历史数据进行仿真实验。结果表明:MKELM 有更好的诊断准确度,并且LLSO 可解决MKELM 相对较多的参数带 来的训练速度较慢的问题;与经典的粒子群算法(particle swarm optimization,PSO)相比,LLSO 有着更快的优化速 度,证明了LLSO-MKELM 可用于观瞄系统故障诊断,并且有着良好的训练速度和准确度。

    Abstract:

    A fault diagnosis model based on multi-kernel extreme learning machine (MKELM) is proposed for the observation-aiming system of armored vehicles. The parameters of the model are optimized by the level-based learning swarm optimizer (LLSO) algorithm, and the simulation experiments are carried out by using the collected historical data. The results show that MKELM has better diagnostic accuracy, and LLSO can solve the problem of slow training speed caused by relatively more parameters of MKELM. Compared with the classical particle swarm optimization (PSO), LLSO-MKELM has a faster optimization speed, which proves that LLSO-MKELM can be used for fault diagnosis of the observation-aiming system, and has a good training speed and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王文傲.基于LLSO-MKELM 算法的观瞄故障诊断[J].,2023,42(03).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-13
  • 最后修改日期:2022-12-28
  • 录用日期:
  • 在线发布日期: 2023-04-07
  • 出版日期:
文章二维码