基于深度学习的小口径弹药装配设备故障诊断专家系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

军科委基础加强项目(2019-JCJQ-ZD-313-00);国防基础科研项目(JCKY2020209B002)


Fault Diagnosis Expert System of Small Caliber Ammunition Assembly Equipment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对小口径弹药装配设备故障诊断智能化程度不足、诊断效率低以及误诊率高等问题,开展小口径弹药装配设备故障诊断技术和专家系统研究。为提高复杂装备故障知识推理及判别精度,研究基于知识图谱和故障树的故障类别知识库构建方法,提出基于规则和案例的故障知识推理方法,采用深度学习算法进行故障知识推理和更新,构建故障诊断模型并用于小口径弹药装配设备故障诊断专家系统。结果表明:该系统可实现对小口径弹药装配设备故障的智能预测和分析,符合制造装备智能化发展要求,为制造装备智能化、信息化的研制发展和推广应用提供参考。

    Abstract:

    Aiming at the problems of insufficient intelligence, low diagnosis efficiency and high misdiagnosis rate in the fault diagnosis of small caliber ammunition assembly equipment, the fault diagnosis technology and expert system of small caliber ammunition assembly equipment are studied. In order to improve the fault knowledge reasoning and discrimination accuracy of complex equipment, the knowledge base construction method of fault category based on knowledge map and fault tree is studied, and the fault knowledge reasoning method based on rules and cases is put forward. The deep learning algorithm is used to reason and update the fault knowledge, and the fault diagnosis model is constructed and used in the small caliber ammunition assembly equipment fault diagnosis expert system. The results show that the system can realize the intelligent prediction and analysis of the failure of the small caliber ammunition assembly equipment, meet the requirements of intelligent development of manufacturing equipment, and provide a reference for the development and application of intelligent and information manufacturing equipment.

    参考文献
    相似文献
    引证文献
引用本文

李 聪.基于深度学习的小口径弹药装配设备故障诊断专家系统[J].,2023,42(06).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-30
  • 最后修改日期:2023-03-05
  • 录用日期:
  • 在线发布日期: 2023-07-10
  • 出版日期:
文章二维码