基于VGG网络的轻量化小型水下构筑物探伤模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省大学生创新训练计划(202111276010Z; 202011276007Z)


Flaw Detection Model of Lightweight Small Underwater Structures Based on VGG Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下构筑物伤痕形态随机多变,特征提取困难,导致水下探伤识别精度较低的问题,提出一种基于视觉几何组(visual geometry group,VGG)网络的轻量化小型VGG(lite small visual geometry group,LSVGG)模型。采用经典VGG网络结构,减少卷积层和提高特征数量的方法在保证识别精度的前提下降低运算时间和系统开销。实验结果表明:该LSVGG模型可以部署在小型无缆水下机器人(autonomous underwater vehicle,AUV)上,具有较高水下构筑物探伤识别精度;与传统模型相比,水下构筑物探伤识别精度提高了近一倍,识别准确率高达99.7%。

    Abstract:

    Aiming at the problem of low recognition accuracy of underwater flaw detection due to the random and changeable shape of underwater structures and the difficulty of feature extraction, a lightweight small visual geometry group (LSVGG) model based on visual geometry group (VGG) network is proposed. The classical VGG network structure is adopted to reduce the convolution layer and improve the number of features, which can reduce the operation time and system overhead on the premise of ensuring the recognition accuracy. The experimental results show that the LSVGG model can be deployed on the small autonomous underwater vehicle (AUV) and has high flaw detection and identification accuracy for underwater structures. Compared with the traditional model, the recognition accuracy of underwater structure flaw detection is nearly doubled, and the recognition accuracy is as high as 99.7%.

    参考文献
    相似文献
    引证文献
引用本文

冯家乐.基于VGG网络的轻量化小型水下构筑物探伤模型[J].,2023,42(08).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-19
  • 最后修改日期:2023-05-20
  • 录用日期:
  • 在线发布日期: 2023-08-18
  • 出版日期:
文章二维码