改进TOPSIS 的多属性决策方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

复杂电子系统仿真实验室基础研究项目(DXZT-JC-ZZ-2020-006)


Multiple Attribute Decision Making Method Based on Improved TOPSIS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对逼近理想点排序法(technique for order preference by similarity to ideal solution,TOPSIS)存在的缺陷, 提出基于Tanimoto 系数和基于对称差的2 种改进TOPSIS。改善或解决TOPSIS 存在指标相关性问题、特殊样本集合 无法比较优劣问题和样本数据动态变化时产生的逆序现象等缺陷;在稳定性、特异性、敏感性和有效性4 方面对经 典TOPSIS 模型、改进Tanimoto 模型和改进对称差模型进行对比验证,给出2 种改进模型的适用场景。结果表明,2 种方法各具有一定的优势。

    Abstract:

    Aiming at the defects of TOPSIS (technique for order preference by similarity to ideal solution), two improved TOPSIS methods based on Tanimoto coefficient and symmetric difference are proposed. Improve or solve TOPSIS index correlation problem, special sample set can not compare the advantages and disadvantages of the problem and the sample data dynamic changes in the reverse phenomenon and other defects; The classical TOPSIS model, the improved Tanimoto model and the improved symmetric difference model were compared and verified in terms of stability, specificity, sensitivity and validity, and the application scenarios of the two improved models were given. The results show that the two methods have their own advantages.

    参考文献
    相似文献
    引证文献
引用本文

常 青.改进TOPSIS 的多属性决策方法[J].,2024,43(06).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-22
  • 最后修改日期:2024-03-25
  • 录用日期:
  • 在线发布日期: 2024-06-19
  • 出版日期:
文章二维码