基于集成学习的物联网攻击检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市自然科学基金项目(CSTB2023NSCQMSX0435)


IoT Attack Detection Method Based on Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对物联网入侵检测方法在检测精度和资源消耗方面存在的问题,提出基于集成学习轻量级梯度提升机 (light gradient boosting machine,LightGBM)和随机森林(random forest,RF)模型的物联网攻击检测方法。采用网格 搜索(grid search,GS)和启发式算法对模型的超参数进行调优超参数优化,使用合成少数过采样技术(synthetic minority over-sampling technique,SMOTE)进行数据增强,解决物联网数据集标签不平衡问题。实验结果表明:通 过SMOTE 技术后,基于网格搜索下的轻量级梯度提升机(grid search-light gradient boosting machine,GS-LightGBM) 模型准确率达99.91%,且在不平衡数据集上表现优异;在资源消耗方面,基于遗传算法下的随机森林(genetic algorithm-random forest,GA-RF)模型在准确率99.88%的情况下,平均推理时间达到微秒级别,推理时占用内存不 到1kB,在大部分资源受限的物联网设备上能实现高效运行。

    Abstract:

    In addressing the issues of detection accuracy and resource consumption in IoT intrusion detection methods, an IoT attack detection method based on ensemble learning lightweight gradient boosting machine (LightGBM) and random forest (RF) models is proposed. Grid search (GS) and heuristic algorithms are used to tune the hyperparameters of the models, and the synthetic minority over-sampling technique (SMOTE) is employed for data augmentation to address the imbalance in IoT dataset labels. Experimental results show that after applying the SMOTE technique, the grid search-light gradient boosting machine (GS-LightGBM) model achieves an accuracy of 99.91% and performs excellently on imbalanced datasets. In terms of resource consumption, the genetic algorithm-random forest (GA-RF) model achieves an accuracy of 99.88%, with an average inference time at the microsecond level and memory usage of less than 1kB during inference, enabling efficient operation on most resource-constrained IoT devices.

    参考文献
    相似文献
    引证文献
引用本文

窦佳恩.基于集成学习的物联网攻击检测方法[J].,2024,43(08).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-23
  • 最后修改日期:2024-05-25
  • 录用日期:
  • 在线发布日期: 2024-08-14
  • 出版日期:
文章二维码