高密度运行场景下的无人机四维轨迹规划方法
DOI:
CSTR:
作者:
作者单位:

1.中国民用航空飞行学院;2.北京航空航天大学电子信息工程学院;3.应急管理部大数据中心;4.民用航空飞行学院空中交通管理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(SQ2023YFC3000228);国家自然科学基金民航联合基金(U1733105);四川省中央引导地方科技发展专项(2020ZYD094);四川省科技计划(2021YFS0391);创新训练项目(S202310624272)


Four-dimensional trajectory planning method of Drone Swarm based on urban combat scenario
Author:
Affiliation:

Civil Aviation Flight University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着无人系统技术的发展,无人机在民用、军事等各领域取得了广泛应用。其中,城市场景下的多无人机协同作战作为无人机集群的重要应用场景,直接影响着系统作战效能。然而,随着城市空域场景的复杂化、集群密度增加等趋势,传统基于空间维度的轨迹规划方法因其规划密度较低,不再适用于现代复杂战场环境。因此,本文聚焦于现代城市场景下的高密度无人机运行场景,引入时间维度,将三维作战场景扩展为四维动态空域。以规划成本最小化为目标,对A*算法的成本估计函数在时间维度上进行了重构,提出了面向城市作战的动态路径规划算法4D-A*。仿真实验表明,4D-A*不但能够在高密度运行场景中有效提升多无人机协同作战能力,避免缺失时间维度带来的固有“绕路”问题,降低时间成本消耗,同时与基础方法相比也具有更高的可靠性和鲁棒性,在复杂真实场景中能够避免空间与时间属性的解耦,有效避免多机冲突以及减少飞行时长,能够满足无人机城市作战任务需求。

    Abstract:

    With the development of unmanned systems technology, drones have been widely applied in both civilian and military fields. Among these applications, multi-UAVs’ collaborative operations in urban scenarios serve as a crucial example of drone swarm applications, directly impacting the operational effectiveness. However, as the swarm densities increase,with the complex urban airspace environments, traditional trajectory planning methods based solely on spatial dimensions are no longer suitable for this environment due to their low planning density. Therefore, this paper first introduces the time dimension to extend the three-dimensional combat environment into a four-dimensional dynamic airspace . Moreover, with the goal of minimizing planning costs, the cost estimation function of the A* algorithm is reconstructed in the time dimension, and a dynamic path planning algorithm, 4D-A*, tailored for urban combat, is proposed. Simulation experiments demonstrate that 4D-A* not only effectively enhances the multi-UAVs’ collaborative combat capability in high-density operational scenarios by avoiding the inherent “detour” problem caused by the absence of the time dimension, but also reduces time cost consumption. Compared to basic methods, 4D-A* also offers higher reliability and robustness, avoiding the decoupling of spatial and temporal attributes in complex real-world scenarios, effectively preventing multi-UAV’ conflicts and reducing flight time, thereby meeting the demands of urban combat missions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-12
  • 最后修改日期:2024-10-18
  • 录用日期:2024-11-15
  • 在线发布日期:
  • 出版日期:
文章二维码