基于MADDPG算法的多智能体机动行为决策方法
DOI:
CSTR:
作者:
作者单位:

杭州智元研究院有限公司

作者简介:

通讯作者:

中图分类号:

TJ0;

基金项目:


A Multi-Agent Maneuvering Behavior Decision-Making Method for Simulation based on the MDDPG Algorithm
Author:
Affiliation:

Zhiyuan Research Institute,Strategic Research Department

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文介绍了一种基于MADDPG算法的多智能体协同机动行为决策方法,用于城市战场的高效协同导航。该方法基于MADDPG算法优化智能体策略,考虑了通行障碍、地形地貌、天气条件及损伤程度等环境因素。通过定义多智能体状态模型和目标函数,实现了时间效率、路径优化和碰撞避免的协同决策。实验基于OpenStreetMap的开源数据,模拟了三个智能体合作侦察的场景。结果显示,该方法能快速提升智能体协作效率,并在约30000次迭代后达到稳定性能。智能体能够动态调整路径,避让障碍或选择最佳路线,展现了在非严格避障下的有效协同规划能力。综上所述,本文提出的多智能体协同机动行为决策框架,为复杂环境下的协同导航问题提供了有效解决方案,显著提升了智能体间的协作效果。

    Abstract:

    This paper introduces a multi-agent coordinated maneuvering behavior decision-making method based on the MADDPG algorithm, for efficient collaborative navigation in urban battlefields. This method optimizes agent strategies based on the MADDPG algorithm, taking into account environmental factors such as traffic obstacles, topography, weather conditions, and damage levels. By defining a multi-agent state model and objective function, it achieves collaborative decision-making in terms of time efficiency, path optimization, and collision avoidance. The experiments were conducted based on open-source data from OpenStreetMap, simulating a scenario where three agents cooperate in reconnaissance. The results show that this method can rapidly improve the coordination efficiency of agents and achieve stable performance after about 30,000 iterations. The agents can dynamically adjust their paths, avoid obstacles, or select the best routes, demonstrating effective collaborative planning capabilities under non-strict obstacle avoidance conditions. In summary, the multi-agent coordinated maneuvering behavior decision-making framework proposed in this paper provides an effective solution to the problem of collaborative navigation in complex environments, significantly enhancing the collaboration effect between agents.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-13
  • 最后修改日期:2024-11-04
  • 录用日期:2024-11-19
  • 在线发布日期:
  • 出版日期:
文章二维码