基于DoDAF和参数图的城市作战体系
DOI:
CSTR:
作者:
作者单位:

杭州智元研究院有限公司

作者简介:

通讯作者:

中图分类号:

TJ0;

基金项目:


Urban Combat System Based on DoDAF and Parametric Diagrams
Author:
Affiliation:

Zhiyuan Research Institute,Strategic Research Department

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文面向城市战场的协同机动任务,针对通行障碍、天气条件影响及损伤程度等环境因素问题,提出一种基于MADDPG算法的多智能体协同机动行为决策方法。通过定义多智能体状态模型和目标函数,实现了时间效率、路径优化和碰撞避免的协同决策。实验基于OpenStreetMap的开源数据,模拟了3个智能体合作侦察的场景。结果表明:该方法能快速提升智能体协作效率,并在约30000次迭代后达到稳定性能。智能体能够动态调整路径,避让障碍或选择最佳路线,展现了在非严格避障下的有效协同规划能力。该方法为复杂环境下的协同导航问题提供了有效解决方案,显著提升了智能体间的协作效果。

    Abstract:

    This paper aims at the coordinated maneuvering task in urban battlefield,aiming at the environmental factors such as urban traffic obstacles, weather conditions, and damage degree,a multi-agent collaborative maneuvering behavior decision-making method based on the MADDPG algorithm is proposed. By defining a multi-agent state model and objective function, collaborative decision-making for time efficiency, path optimization, and collision avoidance is achieved. The experiment is based on open-source data from OpenStreetMap, simulating a scenario where three agents collaborate for reconnaissance. The results show that this method can rapidly improve the efficiency of agent collaboration and achieve stable performance after approximately 30,000 iterations. The agents can dynamically adjust their paths, avoid obstacles or choose the optimal route, demonstrating effective collaborative planning capabilities under non-strict obstacle avoidance. This method provides an effective solution for collaborative navigation problems in complex environments, significantly improving the collaboration among agents.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-13
  • 最后修改日期:2024-12-31
  • 录用日期:2024-11-19
  • 在线发布日期:
  • 出版日期:
文章二维码