一种基于结构化密度的超维计算分类方法
DOI:
CSTR:
作者:
作者单位:

四川九洲电器集团有限责任公司国防先进技术研究院

作者简介:

通讯作者:

中图分类号:

基金项目:


A Hyperdimensional Computing Classification Method Based on Structured Density
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对超维计算中较大尺寸的图像直接超维编码难度较大,且传统超维编码方法复杂度较高的问题,提出了一种基于结构化密度的超维计算分类方法。该方法首先用方向梯度直方图提取图像目标有效特征并使用主成分分析法对所提图像目标特征进行降维;其次,通过结构化密度超维编码降低超维编码计算复杂度;最后,通过汉明距离来判别待测目标所属类别。实验结果表明,该方法通过传统特征提取方法提取图像中目标有效特征,简化了直接超维编码难度;同时与传统的超维编码相比,所提超维编码方法在保持分类准确率的同时降低了计算复杂度,提升了图像分类识别效率。

    Abstract:

    Aiming at the problem that it is difficult to directly hyperdimensionally encode images of larger sizes in hyperdimensional computing and the complexity of traditional hyperdimensional coding methods is relatively high, a hyperdimensional computing classification method based on structured density is proposed. This method first uses the histogram of oriented gradients to extract the effective features of the image target and uses principal component analysis to reduce the dimension of the extracted image target features. Secondly, the computational complexity of hyperdimensional coding is reduced through structured density hyperdimensional coding. Finally, the category to which the target to be tested belongs is determined by Hamming distance. Experimental results show that this method extracts the effective features of the target in the image through traditional feature extraction methods, simplifying the difficulty of direct hyperdimensional coding. At the same time, compared with traditional hyperdimensional coding, the proposed hyperdimensional coding method reduces the computational complexity while maintaining the classification accuracy and improves the efficiency of image classification and recognition.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-18
  • 最后修改日期:2024-10-18
  • 录用日期:2024-11-07
  • 在线发布日期:
  • 出版日期:
文章二维码