多尺度特征提取与融合注意力的坦克检测算法
DOI:
CSTR:
作者:
作者单位:

重庆理工大学机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金:5217053589、52475549,重庆市自然科学基金创新发展联合基金:CSTB2023NSCQ-LZX0088


Tank detection algorithm based on multi-scale feature extraction and attention fusion
Author:
Affiliation:

College of Mechanical Engineering, Chongqing University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在现代化战争和国防技术领域,坦克目标的精确检测对于军事决策和战术部署至关重要。然而,传统目标检测算法存在检测精度不足和误检等问题。为解决这些问题,提出了一种基于改进 yolov5s 的目标检测算法,以实现对坦克目标的识别。算法设计了一个能够提取多尺度特征的网络模块,对 yolov5s 中的 C3 模块进行优化,从而增强算法的特征提取能力;提出了一种基于空间金字塔池化改进的特征提取模块,通过增加不同尺度的池化核,捕捉不同尺度的特征信息;引入并改进了 iRMB(Inverted Residual Module with Bottleneck)模块,并将其中的注意力模块替换为 LSKA(Large Kernel Attention),提高网络识别关键信息的能力。在坦克数据集上进行的测试结果表明,改进后的算法在平均精度上提高了3.2%,召回率提高了2.1%,mAP50 提高了1.1%,mAP50-95 提高了2.5%。这些结果充分证明了改进后的 yolov5s 模型在坦克目标检测方面具有显著的性能优势。

    Abstract:

    In the field of modern warfare and defense technology, accurate detection of tank targets is crucial for military decision-making and tactical deployment. However, the traditional target detection algorithm has problems such as insufficient detection accuracy and false detection. In order to solve these problems, a target detection algorithm based on improved yolov5 s is proposed to realize the recognition of tank targets. The algorithm designs a network module that can extract multi-scale features, and optimizes the C3 module in yolov5s to enhance the feature extraction ability of the algorithm. An improved feature extraction module based on spatial pyramid pooling is proposed, which captures feature information of different scales by adding pooling kernels of different scales. The iRMB ( Inverted Residual Module with Bottleneck ) module is introduced and improved, and the attention module is replaced by LSKA ( Large Kernel Attention ) to improve the ability of the network to identify key information. The test results on the tank dataset show that the improved algorithm improves the average accuracy by 3.2 %, the recall rate by 2.1 %, the mAP50 by 1.1 %, and the mAP50-95 by 2.5 %. These results fully prove that the improved yolov5 s model has significant performance advantages in tank target detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-23
  • 最后修改日期:2024-11-04
  • 录用日期:2024-11-07
  • 在线发布日期:
  • 出版日期:
文章二维码