基于视觉的瞄准方向控制策略
DOI:
CSTR:
作者:
作者单位:

1.南京理工大学;2.杭州智元研究院有限公司;3.南京理工大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Method of Aiming Direction Control Based on Visual Servo
Author:
Affiliation:

School of Mechanical Engineering, Nanjing University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于视觉的伺服控制方法广泛应用于小型无人武器打击平台。为准确获得瞄准目标点时的伺服姿态,并提高平台对目标的跟踪瞄准精度,本文提出了一种PBVS(Position-based Visual Servo)瞄准线跟踪控制方法。首先利用齐次坐标推导目标坐标位置;再根据卡尔曼滤波方法,对目标位置进行滤波与预测,补偿对运动目标跟踪瞄准时的视觉和控制系统延迟,解算平台目标姿态;最后构建了反馈与前馈混合的控制模型,并进行了试验验证。结果表明,基于卡尔曼滤波的PBVS方法的伺服系统与直接IBVS(Image-based Visual Servo, IBVS)方法相比,瞄准线的控制更为平稳;增加前馈环节的控制可有效降低瞄准线与运动目标的平均偏差,反馈与前馈混合的控制方法可提升移动平台对运动目标的跟踪性能,为无人化作战的精确打击提供了技术途径。

    Abstract:

    Visual-based Servo Control method is widely used in small unmanned weapon platforms. We propose a PBVS (Position-based Visual Servo) control method with the aim of obtaining the accurate servo posture and improving the accuracy of the servomechanism platform. Firstly, the target coordinate position is deduced with homogeneous coordinates. Then, the target position is filtered and predicted according to the Kalman filter method, as the delay of visual system and control system while tracking moving target is compensated, later on, the target servo posture is calculated. Finally, the feedforward-feedback control model is applied. The experimental validation results show that the PBVS method based on Kalman filter is more stable than the direct IBVS (Image-based Visual Servo) method. The feedforward link in the control system reduces the average tracking deviation to the target effectively, and the control model of feedback and feedforward can improve the overall control performance of the system, which provides a technical approach for controlling in weapon platforms precisely.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-11
  • 最后修改日期:2024-11-18
  • 录用日期:2024-11-22
  • 在线发布日期:
  • 出版日期:
文章二维码