基于RepVGG的疲劳驾驶检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省产学研合作项目(BY20230688);新一代信息技术创新项目(2022IT208);江苏高校“青蓝工程”


Fatigue Driving Detection Algorithm Based on RepVGG
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高疲劳驾驶检测方法的准确率和可部署性,提出一种基于RepVGG的疲劳驾驶检测算法。在模型中增添空洞卷积金字塔池化(atrous spatial pyramid pooling,ASPP)模块,以捕捉多尺度疲劳特征信息。将卷积块注意力模块(convolutional block attention module,CBAM)与ASPP模块结合,单独应用于模型中,进一步强调和捕捉疲劳特征表达的多尺度信息和重要区域信息,并抑制图像中的背景信息,从而提高模型的性能和鲁棒性。结果表明:改进RepVGG算法在疲劳驾驶数据集上的准确率达到了97.34%,比原算法提高了2.51%,且模型参数量仅为7.1×106,具有良好的检测精度和可部署性。

    Abstract:

    In order to improve the accuracy and deployability of fatigue driving detection method, a fatigue driving detection algorithm based on RepVGG is proposed. An atrous spatial pyramid pooling (ASPP) module was added to the model to capture the multi-scale fatigue characteristics. A Convolutional block attention module (convolutional block attention module, CBAM) is combined with an ASPP module and separately applied to the model to further emphasize and capture the multi-scale information and important regional information expressed by fatigue features, and to suppress the background information in the image. Thereby improving the performance and robustness of the model. The results show that the accuracy of the improved RepVGG algorithm on the fatigue driving data set reaches 97. 34%, which is 2. 51% higher than that of the original algorithm, and the number of model parameters is only 7. 1 × 106, which has good detection accuracy and deployability.

    参考文献
    相似文献
    引证文献
引用本文

夏庆锋.基于RepVGG的疲劳驾驶检测算法[J].,2024,43(12).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-09
  • 最后修改日期:2024-07-15
  • 录用日期:
  • 在线发布日期: 2024-12-30
  • 出版日期:
文章二维码