基于改进YOLOv5的钢材表面缺陷检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Steel Surface Defect Detection Based on Improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型的特征敏感度;在特征融合层中加入可变形大内核注意力机制(deformable large kernel attention,D-LKA),增强模型对图像中不规则缺陷的捕捉能力;将原损失函数替换为Wise-IoU损失函数,降低数据集中低质量示例对模型检测效果的影响并提升小目标缺陷检测能力,在NEU-DET上进行实验验证。实验验证结果表明:YOLOv5s-ADW算法的平均精度均值(mean average precision,mAP)达到88.3%,相较原始模型提升了14.4%;小目标缺陷和漏检率高的缺陷平均精度(average precision,AP)也有较大提升,相比其他主流算法,能够更好解决上述问题。

    Abstract:

    Aiming at the problems of unsatisfactory defect detection effect and insufficient feature extraction of small and medium targets in steel surface defect detection, a YOLOv5s-ADW algorithm based on YOLOv5 algorithm was proposed. a mixed model of self-attention and convolution (ACmix) module is integrated into the backbone network layer to enhance the feature sensitivity of the model. The deformable large kernel attention (D-LKA) mechanism is added to the feature fusion layer to enhance the ability of the model to capture irregular defects in images. The original loss function was replaced by Wise-IoU loss function to reduce the influence of low-quality examples on the model detection effect and improve the detection ability of small target defects, and the experimental verification was carried out on NEU-DET. Experimental results show that the mean average precision (mAP) of the YOLOv5s-ADW algorithm reaches 88.3%, which is 14.4% higher than that of the original model. The average precision (AP) of small target defects and defects with high missed detection rate is also greatly improved, which can better solve the above problems compared with other mainstream algorithms.

    参考文献
    相似文献
    引证文献
引用本文

刘祉燊.基于改进YOLOv5的钢材表面缺陷检测[J].,2024,43(12).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-23
  • 最后修改日期:2024-07-20
  • 录用日期:
  • 在线发布日期: 2024-12-30
  • 出版日期:
文章二维码