基于深度学习的跨域目标检测研究综述
DOI:
CSTR:
作者:
作者单位:

中国人民武装警察部队工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:


A Research Review on Deep Learning Based Cross-Domain Target Detection
Author:
Affiliation:

1.University of Engineering of the Chinese People'2.'3.s Armed Police Force

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着目标检测趋向智能化,现阶段检测过程中需要面对不同领域的需求,为了满足这一需求催生出跨域目标检测这项技术,本文首先简要介绍深度学习的目标检测技术并引出跨域目标检测技术,而后根据跨域目标检测的方法分类,结合前人的文献以及实验,总结出所使用的方法以及存在的缺点,随后本文列举出现阶段主要使用的跨域数据集包括CDTD、Cityscapes与Foggy Cityscapes、M3D,以及跨域目标检测常用的评价指标,如mAP、F散度和H散度,都可以准确地评价算法对跨域目标检测的效果,最后本文列举出跨域目标检测的存在挑战,其中包括了领域差异、小样本学习和数据增强与特征对齐三个方面,并且从提高自适应性、提升鲁棒性和加强便携性三个方向进行展望,为跨域目标检测领域的研究和实践提供一个全面的参考框架。

    Abstract:

    As target detection tends to be intelligent, the detection process at this stage needs to face the needs of different fields, in order to meet this demand has given rise to the technology of cross-domain target detection, this paper firstly briefly introduces the target detection technology of deep learning and introduces the cross-domain target detection technology, then according to the classification of cross-domain target detection methods, combined with the literature of the predecessors as well as the experiments, to summarize the methods used and the shortcomings. Subsequently, this paper lists the main cross-domain datasets used at this stage, including CDTD, Cityscapes and Foggy Cityscapes, M3D, as well as the commonly used evaluation metrics for cross-domain target detection, such as mAP, F-scatter, and H-scatter, which can accurately evaluate the effectiveness of the algorithms for cross-domain target detection, and finally, this paper lists the existing challenges of cross-domain target detection, which include domain differences, small sample learning and data enhancement and feature alignment, and looks forward in three directions, namely, improving adaptivity, enhancing robustness and strengthening portability, to provide a comprehensive reference framework for research and practice in the field of cross-domain target detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:2024-12-17
  • 录用日期:2025-01-07
  • 在线发布日期:
  • 出版日期:
文章二维码