基于深度学习的跨域目标检测研究综述
DOI:
CSTR:
作者:
作者单位:

中国人民武装警察部队工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:


A Research Review on Deep Learning Based Cross-Domain Target Detection
Author:
Affiliation:

1.University of Engineering of the Chinese People'2.'3.s Armed Police Force

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现阶段检测过程中需要面对不同领域的需求,提出基于深度学习的跨域目标检测技术研究。介绍深度学习的目标检测技术并引出跨域目标检测技术,合前人的文献以及实验,总结出所使用的方法以及存在的缺点;列举出现阶段主要使用的跨域数据集包括CDTD、Cityscapes与Foggy Cityscapes、M3D,以及跨域目标检测常用的评价指标,如mAP、F散度和H散度,都可以准确地评价算法对跨域目标检测的效果。指出跨域目标检测的存在挑战,包括领域差异、小样本学习和数据增强与特征对齐3方面,并从提高自适应性、提升鲁棒性和加强便携性3个方向进行展望。结果表明,该研究可为跨域目标检测领域的研究和实践提供一个全面的参考框架。

    Abstract:

    Aiming at the needs of different domains that need to be faced in the detection process at this stage, the research of cross-domain target detection technology based on deep learning is proposed. Introduce the deep learning target detection technology and lead to the cross-domain target detection technology, combine the previous literature and experiments, summarise the methods used and the shortcomings; list the main cross-domain datasets used at this stage, including CDTD, Cityscapes and Foggy Cityscapes, and M3D, as well as the commonly used evaluation metrics for cross-domain target detection, such as mAP, F scatter and H scatter, all of which can accurately evaluate the effectiveness of the algorithm for cross-domain target detection. The existence challenges of cross-domain target detection are pointed out, including 3 aspects of domain differences, small sample learning, and data enhancement and feature alignment, and the outlook is given in 3 directions, namely, improving adaptivity, enhancing robustness, and strengthening portability. The results show that this study can provide a comprehensive reference framework for research and practice in the field of cross-domain target detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:2025-02-19
  • 录用日期:2025-01-07
  • 在线发布日期:
  • 出版日期:
文章二维码