基于BO-GRNN模型的机械设备剩余寿命预测
DOI:
CSTR:
作者:
作者单位:

1.海军航空大学;2.北京跟踪与通信技术研究所

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:


Residual life prediction of mechanical equipment based on BO-GRNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统神经网络中模型参数对机械设备剩余寿命预测精度影响较大的问题,提出了一种基于贝叶斯优化广义回归神经网络(Bayesian optimization generalized regression neural networks, BO-GRNN)的机械设备剩余寿命预测方法。首先,对采集到的传感器数据进行平滑滤波处理,利用主成分分析(Principal component analysis, PCA)对平滑处理后的数据进行特征提取,将第一主成分作为设备的退化特征;其次,构建贝叶斯优化广义回归神经网络剩余寿命预测模型,利用贝叶斯优化算法对平滑滤波窗口宽度和GRNN中的平滑因子进行寻优,使得BO-GRNN模型的预测结果平均误差最低。然后,将测试数据集输入到训练好的BO-GRNN模型中进行剩余寿命预测。最后,采用C-MAPSS数据集对所提方法进行验证,与其他方法相比本文所提方法的预测误差最小,实验结果验证了所提方法的有效性和准确性。

    Abstract:

    Aiming at the problem that model parameters have great influence on the prediction accuracy of residual life of mechanical equipment in traditional neural network, A method for predicting residual life of mechanical equipment based on Bayesian optimization generalized regression neural networks (BO-GRNN) is proposed. Firstly, the collected sensor data is smoothed and filtered, and the principal component analysis (PCA) is used to extract the features of the smoothed data, and the first principal component is regarded as the degraded feature of the device. Secondly, the Bayesian optimization generalized regression neural network residual life prediction model is constructed, and the smoothing filter window width and the smoothing factor in GRNN are optimized by Bayesian optimization algorithm, so that the average error of prediction results of BO-GRNN model is minimum. Then, the test data set is input into the trained BO-GRNN model for residual life prediction. Finally, C-MAPSS data set is used to verify the proposed method. Compared with other methods, the proposed method has the smallest prediction error, and the experimental results verify the effectiveness and accuracy of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-18
  • 最后修改日期:2025-01-07
  • 录用日期:2025-01-10
  • 在线发布日期:
  • 出版日期:
文章二维码