融合启发函数与B样条的新型A*无人机路径优化算法研究
DOI:
CSTR:
作者:
作者单位:

辽宁工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然基金(62303203);辽宁省“揭榜挂帅”技术攻关项目(2023JH1/10400092);辽宁省教育厅面上项目(JYTMS20230837);辽宁省科技厅项目(2023-BS-193);辽宁省教育厅高等学校基本科研项目(LJKMZ20220963)。


Research on a new A* UAV path optimization algorithm with heuristic function and B-Spline
Author:
Affiliation:

Liaoning University of Technology

Fund Project:

National Natural Science Foundation of China (62303203); Liaoning Province "Unveiling the List and Leading the Way" Technology Research and Development Project (2023JH1/10400092); General Project of Liaoning Provincial Department of Education (JYTMS20230837); Project of Liaoning Provincial Department of Science and Technology (2023-BS-193); Basic Research Project for Higher Education Institutions of Liaoning Provincial Department of Education (LJKMZ20220963).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统A*算法在无人机路径规划中搜索节点过多、路径复杂以及效率偏低的问题,提出了一种基于优化启发函数与B样条曲线的新型A*无人机路径规划算法。通过构建包含障碍物对数因子和动态权重系数的新型A*算法启发函数,有效减少了全局路径规划的搜索节点;在平衡无人机飞行动态性能和计算效率的基础上,将传统的8个搜索方向精简为5个,从而降低了算法计算的复杂度;此外,采用改进的Floyd算法删除路径中冗余的中间节点,减少了航迹中不必要的转折;最后,利用三次B样条插值算法对规划出的路径进行平滑处理,使无人机的飞行轨迹更加顺畅。通过在两种不同的地图环境下对改进后的A*算法、传统A*算法和蚁群算法对比分析,实验结果证明了改进型A*算法生成的路径更加高效且平滑。

    Abstract:

    A new A* unmanned aerial vehicle (UAV) path planning algorithm based on optimization heuristic function and B-spline curve is proposed to address the problems of excessive search nodes, complex paths, and low efficiency in the traditional A* algorithm for UAV path planning. By constructing a novel A* algorithm heuristic function that includes logarithmic factors of obstacles and dynamic weight coefficients, the search nodes for global path planning have been effectively reduced. The traditional 8 search directions are reduced to 5 based on balancing the UAV flight"s dynamic performance and computational efficiency, thereby reducing the algorithm"s computational complexity. In addition, the improved Floyd algorithm removes redundant intermediate nodes in the path, reducing unnecessary turns in the trajectory. Ultimately, the cubic B-spline interpolation algorithm is employed to refine the planned path, ensuring a smoother flight trajectory for the UAV. By comparing and analyzing the improved A* algorithm, traditional A* algorithm, and ant colony algorithm in two different map environments, the experimental results demonstrate that the path generated by the improved A* algorithm is more efficient and smoother.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-01-03
  • 录用日期:2025-01-14
  • 在线发布日期:
  • 出版日期:
文章二维码