融合启发函数与B样条的新型A*无人机路径优化算法
DOI:
CSTR:
作者:
作者单位:

辽宁工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然基金(62303203);辽宁省“揭榜挂帅”技术攻关项目(2023JH1/10400092);辽宁省教育厅面上项目(JYTMS20230837);辽宁省科技厅项目(2023-BS-193);辽宁省教育厅高等学校基本科研项目(LJKMZ20220963)


A New A* UAV Path Optimization Algorithm with Heuristic Function and B-Spline
Author:
Affiliation:

Liaoning University of Technology

Fund Project:

National Natural Science Foundation of China (62303203); Liaoning Province "Unveiling the List and Leading the Way" Technology Research and Development Project (2023JH1/10400092); General Project of Liaoning Provincial Department of Education (JYTMS20230837); Project of Liaoning Provincial Department of Science and Technology (2023-BS-193); Basic Research Project for Higher Education Institutions of Liaoning Provincial Department of Education (LJKMZ20220963).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统A*算法在无人机路径规划中搜索节点过多、路径复杂以及效率偏低的问题,提出一种基于优化启发函数与B样条曲线的新型A*无人机路径规划算法。通过构建包含障碍物对数因子和动态权重系数的新型A*算法启发函数,有效减少全局路径规划的搜索节点;在平衡无人机飞行动态性能和计算效率的基础上,将传统的8个搜索方向精简为5个,从而降低算法计算的复杂度;采用改进的Floyd算法删除路径中冗余的中间节点,减少航迹中不必要的转折;利用3次B样条插值算法对规划出的路径进行平滑处理,使无人机的飞行轨迹更加顺畅。在2种不同的地图环境下对改进后的A*算法、传统A*算法和蚁群算法对比分析,实验结果证明,改进型A*算法生成的路径更加高效且平滑。

    Abstract:

    To address the issues of excessive search nodes, complex paths, and low efficiency in traditional A* algorithms for UAV path planning, this paper proposes a novel A* UAV path planning algorithm based on an optimized heuristic function and B-spline curves. By constructing a new heuristic function incorporating obstacle loga-rithmic factors and dynamic weight coefficients, the algorithm effectively reduces the number of search nodes in global path planning. To balance UAV dynamic performance and computational efficiency, the traditional 8 search directions are streamlined to 5, thereby lowering computational complexity. An improved Floyd algorithm is employed to eliminate redundant intermediate nodes in the path, minimizing unnecessary turns. Additionally, a cubic B-spline interpolation algorithm is applied to smooth the planned path, ensuring smoother flight tra-jectories. Comparative experiments under two different map environments demonstrate that the improved A* algorithm outperforms the traditional A* and ant colony algorithms, generating more efficient and smoother paths.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-03-03
  • 录用日期:2025-01-14
  • 在线发布日期:
  • 出版日期:
文章二维码