基于改进Canny算法的传爆管边缘检测技术研究
DOI:
CSTR:
作者:
作者单位:

长春理工大学机电工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

吉林省自然科学资助:YDZJ202301ZYTS423;重庆市自然科学资助:CSTB2022NSCQ-MSX1120;吉林省自然科学资助:YDZJ202301ZYTS263;重庆市自然科学资助:cstc2021jcyj-msxmX0989


Research on Edge Detection Technology of Explosive Tube Based on Improved Canny Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了更加准确地检测传爆管的形位信息,边缘检测成了必不可少的一步。针对传统Canny算法对目标保边效果不佳,传爆管边缘提取不准确问题,提出一种改进方法。首先,利用改进的边缘感知权引导滤波去除图像噪声;然后,利用滤波图像的梯度与自适应块方差加权相结合,提取图像目标特征;最后,利用粒子群优化的高斯函数算法模拟图像灰度分布的方式自适应获取阈值,打破人为设定的局限性提取图像边缘。实验数据表明,所提改进的边缘感知权引导滤波相比于原本的滤波算法在PSNR上提升了5-16dB。同等条件下,所提边缘检测算法相比于传统Canny算法在边缘定位精度上提高了7倍以上。无论从定性分析还是定量分析来看,所提算法在传爆管的保边滤波与边缘定位上具有一定的优势。

    Abstract:

    In order to detect the shape and position information of detonation transmission tubing more accurately, edge detection is an essential step. Aiming at the problem that the traditional Canny algorithm is not effective in preserving the edge of the target and the extraction of the edge of the detonator is not accurate, an improved method is proposed. Firstly, the improved edge sensing weight is used to guide the filter to remove the image noise. Then, the gradient of the filtered image is combined with the adaptive block variance weighting to extract the feature of the image target. Finally, the Gaussian function algorithm of particle swarm optimization is used to simulate the gray distribution of the image to obtain the threshold adaptively, and the edge of the image is extracted by breaking the artificial limitation. Experimental data show that compared with the original filtering algorithm, the improved edge sensing weight guided filter improves the PSNR by 5-16dB. Under the same conditions, compared with t

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-28
  • 最后修改日期:2025-01-03
  • 录用日期:2025-01-15
  • 在线发布日期:
  • 出版日期:
文章二维码