基于DBO-VMD-IRF的某型装备柴油发动机故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.沈阳工业大学;2.沈阳顺义科技股份有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省科学技术计划项目:面向航空发动机运行维护的健康管理数字仿真系统研发与应用(2022JH1/10400007)


Fault diagnosis method of diesel engine of a certain type of equipment based on DBO-VMD-IRF
Author:
Affiliation:

Shenyang University of Technology

Fund Project:

Liaoning Provincial Science and Technology Plan Project: Development and Application of a Health Management Digital Simulation System for Aviation Engine Operation and Maintenance (2022JH1/10400007)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对某型装备柴油发动机结构复杂、工况多变、易故障且监测数据中存在的噪声和无关信息的问题,提出了一种基于蜣螂优化算法(DBO)和变分模态分解(VMD)的信号处理降噪方法并结合解释性随机森林(IRF)构建故障诊断模型。该方法利用DBO优化VMD的分解层次数和惩罚参数,以峭度值为准则对分解模态进行信号重构,并利用IRF模型实现柴油发动机的故障诊断。在此基础上,通过实验将该方法与EEMD-IRF、PSO-VMD-SVM等6种故障诊断模型进行对比,结果表明,DBO-VMD-IRF方法的平均准确率达到99.18%,在诊断性能、准确性和可靠性方面均表现出显著优势。研究表明,该方法可为装甲装备柴油发动机的故障诊断提供可靠的技术支持。

    Abstract:

    To address the issues of structural complexity, variable working conditions, frequent failures, and the presence of noise and irrelevant information in the monitoring data of a certain type of diesel engine, this paper proposes a signal processing denoising method based on Dung Beetle Optimization (DBO) and Variational Mode Decomposition (VMD), combined with an Interpretable Random Forest (IRF) to construct a fault diagnosis model. In this method, DBO is utilized to optimize the decomposition layer number and penalty parameter of VMD. The signal is reconstructed based on the kurtosis criterion of the decomposed modes, and the IRF model is employed to diagnose diesel engine faults. Comparative experiments were conducted with six other fault diagnosis models, such as EEMD-IRF and PSO-VMD-SVM. Results show that the proposed DBO-VMD-IRF method achieves an average accuracy of 99.18% and demonstrates significant advantages in diagnostic performance, accuracy, and reliability. This study provides reliable technical support for fault diagnosis of armored diesel engines.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-04
  • 最后修改日期:2025-01-04
  • 录用日期:2025-01-10
  • 在线发布日期:
  • 出版日期:
文章二维码