基于飞参数据的教练机飞行员左边界飞行训练品质评估
DOI:
CSTR:
作者:
作者单位:

空军航空大学

作者简介:

通讯作者:

中图分类号:

基金项目:

空军装备军内科研项目,基金号不便提供。


Evaluation of trainer aircraft pilot’s left-boundary flight training quality based on flight parameters data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    教练机飞行员左边界飞行训练品质评估工作,存在着人工评判主观意图明显,难以精确定位飞行训练关注点,当前的数智化手段缺乏实用设计,难以满足飞行训练全流程评估等现实需求。由此,依据飞行训练大纲要求,选取左边界飞行训练课目所需典型飞参参数数据,构建“动作识别-风险辨识-能力分析-个性统计”的闭环评估体系;通过DTW复合距离、峭度、偏度建立三维空间坐标系,并结合聚类算法分析飞行动作特征,开展了飞行动作识别,利用朴素贝叶斯算法与最大似然估计进行了飞行风险辨识,借助飞行动作偏离度、峭度、偏度等指标实现了飞行能力分析与个性特征统计;以最小速度平飞动作为例,评估了特定飞行员实际飞行训练效果,验证了本文方法的有效性和实用性。

    Abstract:

    Work of evaluating flight training quality of trainer aircraft pilot on left-boundary, faces practical needs of obvious subjective intention in manual judgment, in accurately locating focus of flight training, lack of practical design of current digital and intelligent means, and difficulty in meeting full process evaluation of flight training. Hence, with flight training outline requirements, typical flight parameters data were selected for left-boundary flight training subjects, and a-loop evaluation system of "action identification-risk identification-capability analysis-personal statistics" was constructed. Through DTW compound distance, kurtosis, skewness, 3D space coordinate system was established, and combined with clustering algorithm, flight action features were analyzed, and ultimately flight action recognition was realized. Flight risk identification was done using naive Bayes algorithm and maximum likelihood. Flight ability analysis and personality characteristic statistics were realized by flight deviation, deviation and kurtosis. At last, actual flight training effect of specific pilot was evaluated by an example of minimum speed level flight action, and effectiveness and practicability of proposed method was verified.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-14
  • 最后修改日期:2025-03-17
  • 录用日期:2025-04-01
  • 在线发布日期:
  • 出版日期:
文章二维码