基于深度学习的电力客服技术研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Power Customer Service Technology Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高电力客服服务质量,提出一种电力智能客服问答系统。基于卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络提取和表示重要信息和上下文信息;结合BiLSTM网络和协同注意机制,提取语义信息并进一步表示为特征向量,解决长语句中前后词之间的依赖问题,获得问题对之间的相关特征表示;提出一种将余弦相似性和欧氏距离进行调和的相似性计算函数,实现问题对的高效匹配;以某电力公司提供的电力数据为例,对所提模型进行实验验证。结果表明:所提模型性能最优,准确率和召回率分别为90.96%和88.63%,为电力客服智能服务的发展提供了一定借鉴作用。

    Abstract:

    In order to improve the service quality of electric power customer service, an intelligent question answering system for electric power customer service is proposed. Extracting and representing important information and context information based on convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM), extracting semantic information and further representing the semantic information as a feature vector by combining a BiLSTM network and a collaborative attention mechanism, solving the dependence problem between front and rear words in a long sentence, and obtaining the related feature representation between question pairs; A similarity calculation function is proposed to reconcile the cosine similarity and Euclidean distance to achieve efficient matching of the problem pairs. Taking the power data provided by a power company as an example, the proposed model is verified. The results show that the performance of the proposed model is the best, the precision and recall are 90.96% and 88.63%, respectively, which provides a reference for the development of electric power customer service intelligent service.

    参考文献
    相似文献
    引证文献
引用本文

唐国亮.基于深度学习的电力客服技术研究[J].,2025,44(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-07
  • 最后修改日期:2024-08-03
  • 录用日期:
  • 在线发布日期: 2025-03-17
  • 出版日期:
文章二维码