基于相似性度量的人体运动姿态红外特征提取与识别技术
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西体育局常规课题(20240338)


Infrared Feature Extraction and Recognition of Human Motion Pose Based on Similarity Measurement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现人体运动姿态特征点的精准高效识别,提出基于相似性度量对人体运动姿态红外特征提取与识别的方法。采用模型约束方法和CNN识别训练法,采集人体运动关键特征点。通过光学标记点构建人体模型,在运动学与逆动力学约束下分类特征点。建立相似性度量回归模型,确定特征点对应关系,结合特征融合与空间聚类,实现人体运动姿态红外识别。实验结果表明:该方法的平均重建完整度为98.03%,平均识别时间为1.305 s,识别成功率高达97.25%,说明该方法具有高效性和准确性优势,可有效提升人体运动姿态识别的应用性能,为相关领域的研究和应用提供参考和借鉴。

    Abstract:

    In order to realize the accurate and efficient recognition of human motion gesture feature points, an infrared feature extraction and recognition method of human motion gesture based on similarity measurement is proposed. The model constraint method and CNN recognition training method are used to collect the key feature points of human motion. The human body model is constructed by optical markers, and the feature points are classified under the constraints of kinematics and inverse dynamics. A similarity measure regression model is established to determine the corresponding relationship of feature points, and the infrared recognition of human motion posture is realized by combining feature fusion and spatial clustering. The experimental results show that the average reconstruction integrity of the method is 98.03%, the average recognition time is 1.305 s, and the recognition success rate is as high as 97.25%, which shows that the method has the advantages of high efficiency and accuracy, and can effectively improve the application performance of human motion posture recognition, and provide reference for research and application in related fields.

    参考文献
    相似文献
    引证文献
引用本文

张帅奇.基于相似性度量的人体运动姿态红外特征提取与识别技术[J].,2025,44(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-24
  • 最后修改日期:2024-08-24
  • 录用日期:
  • 在线发布日期: 2025-03-17
  • 出版日期:
文章二维码