基于多智能体强化学习的履带机器人摆臂控制方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(62203460, U22A2059); 国防科技大学自主创新科学基金(24-ZZCX-GZZ-11)


Articulated Flipper Control Method for Tracked Robots Based on Multi-agent Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决摆臂式履带机器人在3维环境下实现自主摆臂控制面临的挑战,提出一种基于多智能体强化学习的摆臂控制方法。将机器人的每个摆臂视为一个独立智能体,设计一套兼顾底盘稳定性和摆臂动作的奖励函数,采用多智能体强化学习训练各个摆臂运动;将所提方法部署在基于Isaac Sim搭建的3维仿真环境中,通过向每个智能体输入局部高程图和机器人状态,输出摆臂转角。实验结果表明:该方法能实现多种地形下的摆臂自主控制,在机器人自主越障方面相对于单智能体强化学习有显著提升。

    Abstract:

    To address the challenges faced by flipper tracked robots in achieving flipper autonomous control in a 3D environment, a flipper control method based on multi-agent reinforcement learning is proposed. Consider each flipper of the robot as an independent intelligent agent, design a reward function that balances chassis stability and flipper movements, and use multi-agent reinforcement learning to train the movements of each flipper; Deploy the proposed method in a 3D simulation environment based on Isaac Sim, and output the flipper angle by inputting local elevation maps and robot states to each agent. The experimental results show that this method can achieve autonomous control of the flipper in various terrains, and has significant improvement in robot autonomous obstacle crossing compared to single agent reinforcement learning.

    参考文献
    相似文献
    引证文献
引用本文

张洪川.基于多智能体强化学习的履带机器人摆臂控制方法[J].,2025,44(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-24
  • 最后修改日期:2024-08-24
  • 录用日期:
  • 在线发布日期: 2025-03-17
  • 出版日期:
文章二维码