基于多尺度特征的多任务融合电池退化过程预测
DOI:
CSTR:
作者:
作者单位:

西北机电工程研究所

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:


Battery degradation process prediction task based on multi-scale features and multi-task fusion
Author:
Affiliation:

Northwest Institute of Mechanical Electrical Engineering

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着火炮装备智能化、信息化发展加速,锂电池作为关键能量供应源之一,其可靠性大大影响装备的作战效能。精准预测锂电的池健康状态已成为作战效能提升、系统智能化升级的关键技术。为提高锂电池退化过程预测的准确性,本文提出一种基于多尺度特征的多任务融合预测方法。该方法以电池容量和内阻为多任务预测目标,采用伪孪生架构对原始一维数据及经小波变换得到的二维数据进行多尺度下采样,捕捉潜在的长短期退化特征;再通过交叉注意力机制融合下采样后的一维和二维时间序列信息,并输入CNN-GRU组合网络实现锂电池容量和内阻退化轨迹的联合预测,有效克服了数据单一性问题,增强了模型的鲁棒性。公开数据集 CALCE上的预测值与真实值的均方根误差为0.0269,通过迁移学习将模型在采集的火炮电池循环数据上进行工程验证,RMSE值为0.0800。实验结果充分验证了所提方法显著提升了电池退化过程的预测精度,为推理训练一体化及自学习过程提供了新的解决思路,为提升火炮装备的可靠性和智能化水平奠定了坚实基础。

    Abstract:

    With the acceleration of the development of intelligent and informatization of military equipment, lithium batteries, as one of the key energy supply sources of artillery equipment, have a reliability that greatly affects the combat effectiveness of artillery equipment. Accurate prediction of the health status of lithium batteries has become a key technology for improving artillery combat effectiveness and upgrading the intelligent system. In order to improve the accuracy of lithium battery degradation process prediction, we propose a multi-task fusion prediction method based on multi-scale features. This method uses battery capacity and internal resistance as multi-task prediction goals, and uses a pseudo-twin architecture to downsample the original one-dimensional data and the two-dimensional data obtained by wavelet transformation to capture potential long-term and short-term degradation characteristics; then uses the cross-attention mechanism to fuse the downsampled one-dimensional and two-dimensional time series information, and inputs the CNN-GRU combination network to achieve joint prediction of lithium battery capacity and internal resistance degradation trajectory, effectively overcoming the problem of data singularity and enhancing the robustness of the model. The root mean square error of the predicted value and the true value of the experiment on the public data set CALCE is 0.0269, and the model is fine-tuned on the collected artillery battery data through transfer learning, with an RMSE value of 0.0800. The experimental results fully verify that the proposed method significantly improves the prediction accuracy of the battery degradation process, provides new solutions for the integration of inference training and self-learning processes, and lays a solid foundation for improving the reliability and intelligence level of equipment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-06
  • 最后修改日期:2025-04-10
  • 录用日期:2025-04-23
  • 在线发布日期:
  • 出版日期:
文章二维码