基于最小凸包法的兵棋推演态势评估与可视化研究
DOI:
CSTR:
作者:
作者单位:

1.陆军装甲兵学院演训中心;2.中国人民解放军66242部队

作者简介:

通讯作者:

中图分类号:

E917

基金项目:


Research on Situational Assessment and Visualization in Wargaming Based on the Minimum Convex Hull Method
Author:
Affiliation:

Army Academy of Armored Forces, Military Exercise and Training Center

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对兵棋推演中传统态势评估方法依赖人工分析、难以动态量化战场力量对比的问题,本文提出一种基于最小凸包法的实时态势评估与可视化框架。通过提取红蓝双方兵力部署的二维坐标点集,利用Andrew算法构造最小凸包,结合Shoelace公式计算控制区域面积,实现战场态势的实时量化分析。实验基于公开兵棋推演数据,结果表明:红方控制面积呈现“快速增长→稳定保持→下降→后期轻微下降”四阶段演变特征,蓝方则表现为多峰波动趋势;通过态势图可视化,双方控制区域的重叠面积变化可直观揭示战斗强度演变。该方法为军事人员提供了动态、直观的决策支持工具。

    Abstract:

    To address the issue that traditional situation assessment methods in wargaming rely on manual analysis and struggle to dynamically quantify battlefield force comparisons, this paper proposes a real-time situation assessment and visualization framework based on the minimum convex hull method. By extracting two-dimensional coordinate point sets of Red and Blue force deployments, we employ Andrew"s algorithm to construct minimum convex hulls and calculate controlled area sizes using the Shoelace formula, enabling real-time quantitative analysis of battlefield situations. Experiments conducted on public wargaming data reveal: The Red force"s controlled area demonstrates a four-phase evolution pattern characterized by "rapid growth → stable maintenance → decline → slight late-stage reduction", while the Blue force exhibits multi-peak fluctuations. Visualization of situation maps intuitively reveals combat intensity evolution through overlapping area variations between opposing control zones. This method provides military personnel with a dynamic and intuitive decision-support tool.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-08
  • 最后修改日期:2025-04-10
  • 录用日期:2025-04-21
  • 在线发布日期:
  • 出版日期:
文章二维码