基于改进灰狼算法的并行测试任务调度
DOI:
CSTR:
作者:
作者单位:

1.海军航空大学;2.部队

作者简介:

通讯作者:

中图分类号:

V221

基金项目:


Parallel Testing Task Scheduling Based on an Improved Grey Wolf Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前航空武器型号的不断增多,航空武器测试任务的数量和复杂度明显增加,传统的测试方法不仅测试时间长且资源利用率低,不能满足现阶段航空武器测试需要。为此,提出一种基于多目标改进灰狼算法的航空武器并行测试方法,该方法设置测试任务总执行时间和资源利用均衡度两个优化目标,在初始化种群后,根据不同的优化目标生成两个种群,分别设置不同的适应度函数,每个种群基于改进的灰狼算法进化,并在每次进化后采用邻域搜索策略增加局部搜索能力。通过算法仿真实验,该算法在相同实验条件下相较于串行测试方法在测试效率上提高了70.9%;和基本的灰狼优化算法和遗传算法两种单目标并行调度算法相比,测试资源平均利用率分别提高10.23%和8.4%,充分验证了算法的有效性和可行性,具备一定的工程实际应用能力。

    Abstract:

    With the increasing number of aviation weapon models, the quantity and complexity of aviation weapon testing tasks have significantly risen. Traditional testing methods, characterized by long testing times and low resource utilization, fail to meet the current demands of aviation weapon testing. To address this, a parallel testing method for aviation weapons based on an improved multi-objective grey wolf optimization algorithm is proposed. This method establishes two optimization objectives: minimizing total test execution time and balancing resource utilization. After initializing the population, two subpopulations are generated based on the different optimization objectives, each assigned distinct fitness functions. Each subpopulation evolves using the improved grey wolf algorithm, with a neighborhood search strategy incorporated after each evolution to enhance local search capabilities. Simulation experiments demonstrate that, under identical conditions, the proposed algorithm improves testing efficiency by 70.9% compared to serial testing methods. Compared to single-objective parallel scheduling algorithms, such as the basic grey wolf optimization algorithm and genetic algorithm, the average resource utilization rate is improved by 10.23% and 8.4%, respectively. These results validate the effectiveness and feasibility of the algorithm, demonstrating its potential for practical engineering applications.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-30
  • 最后修改日期:2025-06-03
  • 录用日期:2025-06-20
  • 在线发布日期:
  • 出版日期:
文章二维码