基于小波滤波与RBF 网络的微弱磁场信号检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国防装备预研基金项目资助(9140A01010109)


Detection of Weak Magnetic Signal Based on Wavelet Transform and RBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水中兵器检测船舶磁场信号时信噪比较低的问题,提出基于小波滤波与RBF 神经网络的微弱磁场信 号检测算法。根据船舶磁场信号的时频特征,对采集的信号进行小波分解,提取最后一层的低频分量,滤除高频噪 声;并采用样本数据对RBF 网络进行学习,利用学习好的RBF 网络对含噪信号进行处理,提取船舶目标特征信号。 通过计算机仿真结合实测数据对算法进行了检验。结果表明:该算法可以显著提高信噪比,增强了对微弱磁场信号 的检测能力。

    Abstract:

    Aiming at the problem of low signal noise ratio (SNR) in detecting magnetic signal of ship, a detection algorithm based on wavelet transform and RBF neural network was proposed. Based on the characteristic of magnetic signal of ship, the signal was decomposed by wavelet transform, and the low frequency components in last level were taken out to filter out the high frequency noise. Then the RBF neural network was trained by sampled data. The signal polluted by noise was processed by the trained RBF neural network. The results of simulation show that the algorithm increases SNR markedly, and enhances the detection ability of weak magnetic signal of ship.

    参考文献
    相似文献
    引证文献
引用本文

张坚,林春生,陈文须.基于小波滤波与RBF 网络的微弱磁场信号检测[J].,2011,30(07):64-66.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-01-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码