基于BP 神经网络的弹壳表面缺陷分类方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:为了对弹壳表面缺陷进行分类,提出一种基于BP(back propagation)神经网络的弹壳表面缺陷分类方法。 针对弹壳缺陷的特点,提取了各类缺陷的灰度特征、形状特征、几何特征,建立缺陷特征数据库,并采用改进的BP 神经网络算法设计了缺陷分类器。实验结果表明,该方法在枪弹缺陷识别方面具有很好可行性和有效性。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

苟文韬.基于BP 神经网络的弹壳表面缺陷分类方法[J].,2015,34(04):90-91.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码